• Accueil
  • À propos
  • Accrom\(\alpha\)th en PDF
  • Commanditaires
  • Contact
  • Contributions des lecteurs
  • Sites amis

Logo

Solution du paradoxe précédent: Le congrès des myopes

Par Jean-Paul Delahaye
Volume 16.1 - hiver-printemps 2021

Au congrès annuel des myopes, un jeu est organisé avec 11 des congressistes. Après que ceux-ci ont convenu de la stratégie qu’ils allaient utiliser, l’arbitre dispose les joueurs en cercle et pose un chapeau noir ou rouge sur leur tête :

– Le myope 1 voit le chapeau du myope 11 et lui seulement;
– Le myope 2 voit le chapeau du myope 1 et lui seulement;
– …
– Le myope 11 voit le chapeau du myope 10 et lui seulement.

Simultanément, les 11 myopes indique la couleur du chapeau qu’il pense porter et les 11 joueurs gagnent l’accès gratuit au congrès suivant si l’un d’eux, au moins, donne la bonne réponse.

En répondant au hasard, ils ont peu de chance de perdre, mais l’arbitre a pu les espionner pendant qu’ils parlaient avant l’épreuve et il est possible qu’il exploite ce qu’il a entendu pour les faire perdre. Pourtant, même dans un tel cas, les 11 joueurs sont certains de gagner. Quelle stratégie ont-ils convenu qui assure à 100 % que l’un d’eux (au moins) proposera la bonne couleur pour le chapeau qu’il porte ?

Un second problème est posé :

– Prouver que si l’un des myopes est en réalité un aveugle alors, cette fois, aucune stratégie convenue à l’avance ne peut fonctionner dans 100 % des cas.

Solution

Une stratégie gagnante à tous coups pour l’équipe de myopes est la suivante. Le premier myope (ou l’un des myopes choisi une fois pour toutes) indique la couleur qu’il voit devant lui. Les autres indiquent la couleur inverse de celle qu’ils voient devant eux. De deux choses l’une :

a) Tous les chapeaux ont la même couleur. Dans ce cas, le premier myope a deviné la couleur de son chapeau.

b) Les couleurs ne sont pas toutes identiques. Dans ce cas, il existe au moins deux myopes qui ont devant eux un chapeau différent du leur, l’un au moins n’est pas le premier myope et donc devine la couleur de son chapeau.

Le raisonnement pour le second problème consiste à créer une distribution de chapeaux qui fasse perdre tous les joueurs en commençant par l’aveugle. Il est un trop compliqué pour l’espace de
cette rubrique, vous le trouverez détaillé en :

http://www.lifl.fr/~jdelahay/LNA/LNA54.pdf

PDF

  • ● Version PDF
Partagez
  • tweet

Tags: Rubrique des Paradoxes

Articles récents

  • Statistique et santé publique

    André Ross
  • Modéliser le réchauffement climatique

    France Caron
  • Partage équitable bis

    Christiane Rousseau

Sur le même sujet

  • Rubrique des paradoxes: Les deux paires de chaussettes

    Jean-Paul Delahaye
  • Rubrique des paradoxes: Le congrès des myopes

    Jean-Paul Delahaye
  • Solution du paradoxe précédent: Les chapeaux alignés

    Jean-Paul Delahaye

Volumes

  • Journée internationale des mathématiques: Accromath multilingue
  • Volume 16.1 – hiver-printemps 2021
  • Volume 15.2 – été-automne 2020
  • Thème spécial: Les mathématiques sont partout
  • Volume 15.1 – hiver-printemps 2020
  • Volume 14.2 – été-automne 2019
  • Volume 14.1 – hiver-printemps 2019
  • Volume 13.2 – été-automne 2018
  • Volume 13.1 – hiver-printemps 2018
  • Volume 12.2 – été-automne 2017
  • Volume 12.1 – hiver-printemps 2017
  • Volume 11.2 – été-automne 2016
  • Volume 11.1 – hiver-printemps 2016
  • Volume 10.2 – été-automne 2015
  • Volume 10.1 – hiver-printemps 2015
  • Volume 9.2 – été-automne 2014
  • Volume 9.1 – hiver-printemps 2014
  • Volume 8.2 – été-automne 2013
  • Volume 8.1 – hiver-printemps 2013
  • Volume 7.2 – été-automne 2012
  • Volume 7.1 – hiver-printemps 2012
  • Volume 6.2 – été-automne 2011
  • Volume 6.1 – hiver-printemps 2011
  • Volume 5.2 – été-automne 2010
  • Volume 5.1 – hiver-printemps 2010
  • Volume 4.2 – été-automne 2009
  • Volume 4.1 – hiver-printemps 2009
  • Volume 3.2 – été-automne 2008
  • Volume 3.1 – hiver-printemps 2008
  • Volume 2.2 – été-automne 2007
  • Volume 2.1 – hiver-printemps 2007
  • Volume 1 – été-automne 2006
  • Article vedette

    Auteurs

    • Michel Adès
    • Antoine Allard
    • Jean Aubin
    • Marie Beaulieu
    • Rosalie Bélanger-Rioux
    • Claude Bélisle
    • Marc Bergeron
    • Pierre Bernier
    • André Boileau
    • Véronique Boutet
    • Pietro-Luciano Buono
    • Massimo Caccia
    • Jérôme Camiré-Bernier
    • France Caron
    • Philippe Carphin
    • Kévin Cazelles
    • Laurent Charlin
    • Pierre Chastenay
    • Jocelyn Dagenais
    • Marie-France Dallaire
    • Jean-Lou de Carufel
    • Jean-Marie De Koninck
    • Lambert De Monte
    • Jean-Paul Delahaye
    • Marc-André Desautels
    • Florin Diacu
    • Jimmy Dillies
    • Nicolas Doyon
    • Philippe Drobinski
    • Hugo Drouin-Vaillancourt
    • Louis J. Dubé
    • Thierry Duchesne
    • Stéphane Durand
    • Thomas Erneux
    • Philippe Etchécopar
    • Charles Fleurent
    • Jérôme Fortier
    • Marlène Frigon
    • Jean-François Gagnon
    • André Garon
    • Christian Genest
    • Denis Gilbert
    • Jonathan Godin
    • Frédéric Gourdeau
    • Samuel Goyette
    • Jean Guérin
    • Hervé Guillard
    • Abba B. Gumel
    • James A. Hanley
    • Alain Hertz
    • Bernard R. Hodgson
    • Isabelle Jalliffier-Verne
    • Guillaume Jouvet
    • Tomasz Kaczynski
    • Patrick Labelle
    • Marc Laforest
    • Josiane Lajoie
    • Alexis Langlois-Rémillard
    • René Laprise
    • Steffen Lauritzen
    • Denis Lavigne
    • Adrien Lessard
    • Jean Meunier
    • Normand Mousseau
    • Johanna G. Nešlehová
    • Pierre-André Noël
    • Dmitry Novikov
    • Ostap Okhrin
    • Laurent Pelletier
    • Jean-François Plante
    • Annie Claude Prud'Homme
    • Benoît Rittaud
    • Louis-Paul Rivest
    • Serge Robert
    • André Ross
    • Christiane Rousseau
    • Guillaume Roy-Fortin
    • Yvan Saint-Aubin
    • Maria Vittoria Salvetti
    • Vasilisa Shramchenko
    • Robert Smith?
    • William Verreault
    • Redouane Zazoun

Sujets

Algèbre Applications Applications des mathématiques Changements climatiques Chaos Construction des mathématiques COVID-19 Cristallographie cryptographie Dimension 4 Fractales GPS Gravité Géométrie Histoire des mathématiques Imagerie Infini Informatique Informatique théorique Jeux mathématiques Logique mathématique Lumière Mathématiques de la planète Terre Mathématiques et architecture Mathématiques et arts Mathématiques et astronomie Mathématiques et biologie Mathématiques et développement durable Mathématiques et littérature Mathématiques et médecine Mathématiques et physique Mathématiques et transport Miroirs Nombres Pavages Portrait d'un mathématicien Portrait d'un physicien Probabilités Probabilités et statistique Racines Rubrique des Paradoxes Section problèmes Théorie des noeuds Éditorial Épidémiologie

© 2021 Accromath