
Le premier phénomène physique auquel les êtres humains sont confrontés est celui de la gravitation. C’est le phénomène que le jeune enfant observe en laissant tomber, inlassablement, son gobelet du haut de sa chaise. Il ne suffit cependant pas d’observer pour pouvoir expliquer et le chemin de l’expérimentation à la théorie peut être long et difficile, car souvent l’intuition ne suffit pas.

Aristote
~385 à ~382
La cosmologie d’Aristote
La première théorie visant à expliquer la chute des corps est due au philosophe grec Aristote. Pour celui-ci, l’univers est constitué de deux régions différentes subdivisées en sphères concentriques. Ce sont le monde sublunaire, qui s’étend du centre de la Terre à la sphère de la Lune, et le monde supra-lunaire, de la sphère de la Lune à celle des étoiles. Pour Aristote, les lois de la nature ne sont pas les mêmes dans ces deux régions. Le monde sublunaire est imparfait, le monde supra-lunaire est parfait et immuable.
Le monde sublunaire
Dans le monde sublunaire il y a deux sortes de mouvements: la chute des corps, qu’Aristote qualifie de mouvement naturel, et le mouvement violent causé par une force extérieure comme le lancer d’un objet. Pour expliquer la chute des corps, Aristote semble avoir été inspiré par le mouvement des objets dans un liquide. En plaçant divers objets dans l’eau, on constate qu’il y en a qui flottent alors que d’autres coulent, certains plus rapidement que d’autres. En immergeant des objets, on remarque qu’une fois relâchés, les corps lourds restent au fond de l’eau alors que les plus légers remontent à la surface, certains plus rapidement que d’autres.
Pour Aristote, la chute des corps dans l’air est un phénomène analogue qu’il explique en ayant recours aux quatre éléments d’Empédocle. Ces éléments sont, du plus léger au plus lourd, le feu, l’air, l’eau et la terre. Ces quatre éléments sont présents dans chaque corps mais en proportions différentes.
Aristote explique que chaque corps tend à occuper la place naturelle de son élément dominant. Cette tendance
est d’autant plus grande que la proportion de l’élément dominant est importante. Ainsi, plus un corps est lourd (c’est-à-dire comporte une grande proportion de l’élément terre), plus il tombe rapidement car sa tendance à occuper son emplacement naturel est forte. Plus un corps comporte une grande proportion de l’élément feu, plus il s’élève rapidement. Cette propension est facile à constater lorsqu’on observe un feu: on voit bien que les flammes s’élèvent et, tout corps contenant une forte proportion de cet élément fera de même.
Dans cette région intérieure de l’univers, des perturbations interviennent souvent, mais lorsque la cause de ces perturbations prend fin le mouvement du corps est à nouveau régi par les lois naturelles. Par exemple, en lançant un objet dans les airs, on lui imprime un mouvement violent, contre nature. Lorsque la cause de ce mouvement violent prend fin, cet objet tend à reprendre sa place naturelle.
Dans la conception aristotélicienne de la chute des corps, le vide n’est pas concevable. Comme dans l’eau, le mouvement requiert la présence de corps en interaction et la vitesse du mouvement dépend de la composition de ces corps. L’impossibilité du vide force donc Aristote à ajouter un cinquième élément à ceux d’Empédocle. Ce cinquième élément, appelé éther ou quintessence, est présent dans le monde supra-lunaire et comble l’espace entre les planètes et les étoiles.
Le monde supra-lunaire
La région la plus externe est le monde supra-lunaire, qui s’étend de la sphère de la Lune à la sphère des étoiles fixes. Dans cette région, les corps sont parfaits et immuables. D’un point de vue géométrique, la sphère est le corps le plus parfait. Les corps célestes sont donc sphériques et leur mouve- ment ne peut être décrit que par des sphères en rotation.
La théorie d’Aristote sur le monde supra-lunaire s’inspire de la théorie d’Eudoxe pour expliquer le mouvement des planètes. Depuis longtemps, les savants avaient constaté que sept objets célestes se déplaçaient sur un fond d’étoiles fixes. Ces objets mobiles appelés planètes (vagabonds en grec) sont le Soleil et la Lune, ainsi que les planètes connues à l’époque: Mercure, Vénus, Mars, Jupiter et Saturne.
À l’exception de Mars qui, parfois, semble ralentir et même se déplacer en sens inverse durant quelques semaines, on avait observé que les planètes se déplacent d’ouest en est. Eudoxe, né en ~408, a tenté d’expliquer ces phénomènes en proposant un modèle dans lequel la Terre est fixe et les planètes sont situées sur un ensemble de sphères transparentes, homocentriques et interreliées qui tournent à différentes vitesses constantes autour de la Terre. Quant aux étoiles, elles étaient fixées à la sphère la plus extérieure.
La théorie d’Aristote sur la chute des corps présentait des failles majeures, mais en l’absence d’une meilleure explication du mouvement, elle fut adoptée pendant près de 2000 ans.

Galilée
1564-1642
La chute des corps selon Galilée
La théorie aristotélicienne du mouvement est une théorie « spéculative », c’est-à-dire un ensemble d’hypothèses échafaudées à partir d’une observation superficielle et qui ne sont pas vérifiables expérimentalement. On doit à Galilée (1564-1642) la première démarche pour établir expérimentalement une description de la chute des corps.
Plusieurs des objections soulevées à l’encontre du modèle héliocentrique de Nicolas Copernic (1473-1543) découlaient de l’incompatibilité de ce modèle et de la théorie du mouvement d’Aristote. Galilée a compris qu’il fallait développer une autre théorie du mouvement pour que le modèle héliocentrique puisse être adopté. Il montre d’abord, en adoptant un raisonnement par l’absurde, que l’explication d’Aristote n’est pas valide :
Si les corps lourds tombent plus vite que les corps légers, en attachant ensemble un corps léger et un corps lourd, le plus léger des deux ralentira le corps lourd et l’assemblage doit tomber moins vite que le plus lourd des deux corps. Cependant, une fois attachés ensemble, ils forment un nouveau corps plus lourd que le plus lourd des deux. Ce nouveau corps doit donc tomber plus vite que le plus lourd des deux. Ce qui est une contradiction.
Par conséquent, tous les corps doivent tomber à la même vitesse.
Du pendule à l’inertie
Galilée s’est intéressé aux phénomènes que les aristotéliciens ne pouvaient expliquer à l’aide de leur théorie du mouvement, entre autres, le mouvement du pendule. Avec la théorie d’Aristote, il est facile de comprendre que le corps lourd suspendu au bout de la corde va descendre pour retrouver sa place naturelle. Une fois qu’il l’a atteinte, pourquoi remonte-t-il? Ne serait-il pas naturel qu’il demeure suspendu au point le plus bas de la trajectoire ?
En étudiant le mouvement des pendules Galilée utilise divers montages dans lesquels le mouvement s’apparente à celui du pendule.
En modifiant le dispositif, il constate que la bille remonte à peu près à la même hauteur d’où elle a été lancée, même en diminuant la pente et en allongeant le parcours de la remontée. La bille perd graduellement de la vitesse dans la remontée et, en l’absence de frottement, la hauteur atteinte devrait être exactement celle d’où la bille est partie.
Que va-t-il se passer s’il n’y a pas de remontée et que la partie de droite du dispositif demeure horizontale? Par un passage à la limite, Galilée conclut que la bille devrait rouler indéfiniment à vitesse constante. Le mouvement continue donc sans qu’aucune force n’agisse pour le maintenir. Cette conclusion sera reprise par Isaac Newton qui en fit sa première loi du mouvement appelée principe d’inertie.
Pour Aristote, l’état naturel d’un corps, c’est le repos et une force doit s’exercer pour qu’un objet puisse quitter cet état. Avec les expériences de Galilée sur les pendules, il faut abandonner cette idée. Le déplacement en mouvement rectiligne à vitesse constante ne nécessite pas l’intervention d’une force qui le maintiendrait en mouvement. Il n’y a plus de différence qualitative entre repos et mouvement.
La chute des corps
La chute d’un corps est trop rapide pour qu’il soit facile d’en prendre des mesures. Pour procéder à une étude quantitative de ce mouvement, il faut pouvoir le ralentir. Galilée s’est servi du plan incliné pour établir un lien entre le temps et la distance parcourue. Laissons-le relater l’expérience:
On utilise un plan incliné de 1 coudée1 environ, large d’une demi-coudée et épais de trois doigts, dans lequel a été creusé un canal parfaitement rectiligne d’une largeur à peine supérieure à un doigt, à l’intérieur duquel peut glisser une boule de bronze très dure, parfaitement arrondie et polie. Pour diminuer le frottement, on a garni le canal d’une feuille de parchemin bien lustrée.
Intervalles de temps et distances
Galilée mesure la distance que la bille parcourt dans un premier intervalle de temps et constate que durant le deuxième intervalle, elle parcourt trois fois cette longueur. Durant le troisième intervalle, elle parcourt cinq fois cette longueur. Durant le quatrième intervalle, elle parcourt sept fois cette longueur et ainsi de suite.
Il considère les sommes partielles des distances parcourues. Après une unité de temps, une unité de distance. Après deux unités de temps, quatre unités de distance. Après trois unités de temps, neuf unités de distance. Après quatre unités de temps, seize unités de distance.
Il constate alors que les distances parcourues par un corps en chute libre sont proportionnelles au carré des temps2,
\[\frac{d_2}{d_1} = \frac{t_{2}^{2}}{t_{1}^{2}}.\]
En écriture moderne, \(d=ct^2.\)
Composition des mouvements
Galilée a aussi réalisé des expériences sur la composition des mouvements en installant un plan incliné sur une table. Ce plan incliné était muni d’un déflecteur, pour que le mouvement de la bille soit horizontal en quittant le bord de la table.
Avec ce dispositif, en choisissant de quelle hauteur il laissait partir la bille, il contrôlait la vitesse horizontale de celle-ci lorsqu’elle quittait le déflecteur. En faisant l’hypothèse que la trajectoire de la bille est une parabole, il pouvait alors prévoir le point d’impact et calculer la différence entre la valeur théorique et la valeur expérimentale.
La figure suivante est une reproduction de la page de notes prises au cours de cette expérience. Sur cette page, Galilée représente sur une verticale les hauteurs de départ de a bille. Il indique également la distance des points d’impact observé et les distances attendues ainsi que les différences entre ces valeurs.
C’est la première fois dans l’histoire qu’un tel rapport d’expérience est fait. Les notes de Galilée indiquent qu’il voulait comparer les résultats expérimentaux et les valeurs prédites par un modèle. Il a donc calculé les différences entre les distances prédites par le modèle et les valeurs expérimentales. Pour s’assurer que la courbe géométrique qui décrit le mieux la trajectoire d’un projectile est la parabole, Galilée dispose successivement un plan horizontal à différentes hauteurs et il enregistre, pour chacune d’elles, les points d’impact avec la plus grande précision possible. La reproduction de ses notes est donnée dans l’illustration ci-dessus.
Il donne la description suivante d’une autre de ses expériences pour confirmer la forme géométrique de la trajectoire.
Je prends une bille de bronze parfaitement ronde et pas plus grande qu’une noix, et je la lance sur un miroir de métal, tenu non pas perpendiculairement, mais un peu incliné, de telle façon que la bille puisse rouler sur sa surface, et je la presse légèrement dans son mouvement: elle laisse alors la trace d’une ligne parabolique très précise et très nette, plus large ou plus étroite selon que l’angle de projection sera plus ou moins élevé. Ce qui d’ailleurs constitue une expérience évidente et sensible sur la forme parabolique du mouvement des projectiles.
Grâce à ces expériences, Galilée fut en mesure d’affirmer qu’un projectile est en chute libre durant toute la durée du mouvement. La trajectoire du projectile est déviée de la ligne droite. Cependant, les distances entre la ligne droite et la trajectoire sont dans le rapport des carrés des temps.
Par la notion de composition des mouvements, Galilée a montré que les objections à l’héliocentrisme qui se basaient sur la théorie du mouvement d’Aristote n’étaient pas recevables. Il s’est alors intéressé à la lunette et à l’observation des étoiles, des planètes et de la voie lactée.

Isaac Newton
1643-1727
Les lois du mouvement
La formulation actuelle du principe d’inertie est donnée par Newton qui en fait la première de ses trois lois du mouvement.
Première loi du mouvement
Tout corps au repos ou en mouvement rectiligne uniforme demeure au repos ou en mouvement rectiligne uniforme tant et aussi longtemps qu’aucune force n’agit sur ce corps.
Deuxième loi du mouvement
L’accélération communiquée à un corps par une force est directement propor- tionnelle à l’intensité de la force et inversement proportionnelle à la masse du corps.
Troisième loi du mouvement
Toute force d’action s’accompagne d’une force de réaction d’égale intensité et de sens contraire.
De la pomme à la Lune
Le problème des trajectoires circulaires des planètes avait déjà fait l’objet de recherches de la part de René Descartes (1596-1650) et de Christiaan Huygens (1629-1695). Ceux-ci cherchaient à expliquer ce type de mouvement en ayant recours à une force centripète, dirigée vers le centre de la trajectoire, et à une force centrifuge, qui tend à éloigner du centre le corps en orbite. Les premières réflexions de Newton sur l’orbite lunaire prenaient également en compte une force centrifuge. Sa démarche a pris une orientation définitive lorsque Robert Hooke (1635-1703), vers la fin de 1679, a suggéré à Newton une nouvelle façon d’interpréter le mouvement le long d’une trajectoire courbe. Hooke considérait qu’il fallait plutôt décomposer la trajectoire d’une planète selon une composante inertielle, dont la direction est tangente à la courbe de la trajectoire, et une composante centripète.
En considérant une force dirigée vers le centre, cette approche reconnaît toute l’importance du corps central. De plus, s’il y a une force attractive entre le Soleil et les planètes, celle-ci doit exister entre deux corps composés de matière comme la Terre et la Lune. En parvenant à cette conclusion, Newton consacre le rejet du modèle aristotélicien d’un univers constitué d’un monde sublunaire et d’un monde supra-lunaire régis par des lois distinctes.
En adoptant l’intuition de Hooke, la question à laquelle Newton devait trouver réponse est la suivant:
Pourquoi la Lune ne tombe-t-elle pas sur Terre comme le fait la pomme?
Les travaux de Galilée sur la composition des mouvements à l’aide d’un plan incliné muni d’un déflecteur avaient permis de comprendre que la trajectoire d’un projectile peut être considéré comme la composition de deux mouvements. L’hypothèse de Hooke soulève une question:
Peut-on concilier la loi de la chute des corps de Galilée avec le fait que la Lune ne s’écrase pas sur Terre?
Pour répondre à cette question, Newton donne l’exemple d’un boulet de canon. En tirant le boulet horizontalement d’une cer- taine hauteur, il suit une trajectoire parabolique mais prend le même temps pour toucher le sol que si on le laisse tomber à la verticale. Les mouvements, horizontal et vertical, se composent, le trajet parcouru est plus long, mais le temps nécessaire pour effectuer ce parcours est le même, il est indépendant de la vitesse initiale.
Plus la vitesse initiale est importante, plus la distance parcourue par le boulet est grande. Puisque tous les corps tombent avec la même accélération, le temps requis pour tomber de cette hauteur est toujours le même indépendamment de la vitesse horizontale. Ce raisonnement est valide en considérant que la Terre est plate.
Que se passe-t-il si on prend en compte la sphéricité de la Terre?
Si la vitesse initiale est suffisamment grande, la Terre se dérobe sous le boule et le temps nécessaire pour toucher le sol n’est plus le même. Il augmente avec la vitesse initiale. En augmentant la vitesse initiale du boulet, le temps écoulé avant l’impact est plus grand à cause de la courbure de la Terre.
Qu’advient-il si le boulet est tiré du sommet d’une haute montagne avec une vitesse très très grande?
Dans un tel cas, la Terre se dérobe continuellement sous le boulet et celui-ci continue de tourner autour de la Terre. Newton en vient donc à la conclusion que la Lune, tout comme la pomme, « tombe » vers la Terre.
En considérant cette nouvelle approche, Newton a démontré les lois de Kepler sur le mouvement des planètes.
Il restait une question à laquelle Newton n’a pas su répondre et qui a hanté les scientifiques de plusieurs générations.
Comment la force d’attraction se transmet-elle entre deux corps qui ne sont pas en contact?

Bernhard Riemann
1826-1866
Après avoir été initié par les mathématiciens Marcel Grossmann (1878-1936) et David Hilbert (1862-1943) aux travaux de Bernhard Riemann sur la géométrie des espaces courbes, Albert Einstein (1879-1955) a apporté une réponse à cette question en présentant sa théorie de relativité générale3. Einstein explique que la matière incurve l’espace-temps et cette courbure régit le déplacement des corps dans l’espace.
- Une coudée ou brasse florentine vaut 0,583 mètre. ↩
- La notion de fonction n’était pas encore connue et Galilée ne disposait que de la théorie des proportions d’Eudoxe dans laquelle on ne fait que des rapports de grandeurs de même nature, donc un rapport des distances et un rapport des carrés des temps. ↩
- Voir à ce sujet l’article La gravité selon Einstein: leçons d’une fourmi dans ce numéro. ↩