• Accueil
  • À propos
  • Accrom\(\alpha\)th en PDF
  • Commanditaires
  • Contact et Abonnements
  • Sites amis

Logo

Rubrique des paradoxes : Solution du paradoxe « Trois pesées suffisent »

Par Jean-Paul Delahaye
Volume 4.2 - été-automne 2009

Nous avons démontré que lorsque \(n\) pièces de monnaie (\(n \geq 2\)) d’apparence identique sont données, l’une plus légère que les autres, alors trois pesées au plus avec une balance à deux plateaux (permettant de comparer des poids sans les mesurer) suffisent pour l’identification de la pièce la plus légère.

Nous avons procédé de la façon suivante :

Lorsqu’on a deux pièces, on en place une sur le plateau de gauche et l’autre sur le plateau de droite de la balance. Puisque l’une des pièces est plus légère, l’équilibre ne se fait pas et on repère facilement la plus légère.

Nous avons ensuite posé l’hypothèse de récurrence selon laquelle il existe une procédure utilisant au plus trois pesées pour \(n\) pièces et montré qu’il est alors suffisant d’effectuer trois pesées pour \(n + 1\) pièces dont l’une est plus légère que les autres qui, elles, sont toutes de poids identique. En mettant de côté l’une des pièces, on a alors un paquet de \(n\) pièces et un autre de une pièce. Dans le paquet de \(n\) pièces, on peut appliquer la procédure de l’hypothèse de récurrence pour repérer la pièce la plus légère. Si cette procédure ne donne aucune pièce plus légère, celle-ci est alors dans le paquet ne contenant qu’une pièce et, dans un cas comme dans l’autre, on a repéré la pièce la plus légère parmi \(n + 1\) pièces en n’effectuant que trois pesées.

Peut-on vraiment s’imaginer qu’avec un million de pièces en trois pesées on peut repérer celle qui est la plus légère? N’est-il pas étrange que le raisonnement présenté semble s’adapter et arriver à la même conclusion avec une seule pesée au lieu de trois? Il y a donc une erreur. Laquelle?

L’erreur vient de la confusion entre

a) procédure qui repère la pièce la plus légère lorsqu’on lui donne des pièces dont l’une est plus légère, et :

b) procédure qui indique que toutes les pièces sont de poids identique si c’est le cas, et qui indique la plus légère si l’une est plus légère.

Une procédure de pesée du premier type pour trois pièces demande une seule pesée (vous prenez deux pièces, si elles sont de même poids, c’est que la troisième est la plus légère, sinon vous savez laquelle est la plus légère). Une procédure du second type pour trois pièces demande en revanche deux pesées car, après une seule pesée, si les deux pièces essayées ont le même poids, vous ne pouvez savoir si la troisième a le même poids ou si elle est plus légère. Rechercher des procédures de type a n’est pas la même chose que rechercher des procédures de type b. Ceci étant compris, l’erreur est facile à repérer : l’énoncé mentionne des procédures de type a, mais le raisonnement subrepticement utilise l’hypothèse de récurrence avec une procédure de type b.

PDF

  • ● Version PDF
Partagez
  • tweet

Etiquettes : Rubrique des Paradoxes

Articles récents

  • Se rendre invisible, est-ce possible ?

    Christiane Rousseau
  • Points, droites et plans

    André Ross
  • Le jeu de Nim

    Christiane Rousseau

Sur le même sujet

  • Rubrique des paradoxes : La longueur des fleuves

    Jean-Paul Delahaye
  • Rubrique du paradoxe précédent : Des files de voitures

    Jean-Paul Delahaye
  • Rubrique des paradoxes : Le paradoxe des files de voitures

    Jean-Paul Delahaye

Volumes

  • Volume 19.1 – hiver-printemps 2024
  • Volume 19.2 – été-automne 2024
  • Volume 20.1 – hiver-printemps 2025
  • Volume 18.2 – été-automne 2023
  • Volume 18.1 – hiver-printemps 2023
  • Volume 17.2 – été-automne 2022
  • Volume 17.1 – hiver-printemps 2022
  • Journée internationale des mathématiques: Accromath multilingue
  • Volume 16.2 – été-automne 2021
  • Volume 16.1 – hiver-printemps 2021
  • Volume 15.2 – été-automne 2020
  • Thème spécial: Les mathématiques sont partout
  • Volume 15.1 – hiver-printemps 2020
  • Volume 14.2 – été-automne 2019
  • Volume 14.1 – hiver-printemps 2019
  • Volume 13.2 – été-automne 2018
  • Volume 13.1 – hiver-printemps 2018
  • Volume 12.2 – été-automne 2017
  • Volume 12.1 – hiver-printemps 2017
  • Volume 11.2 – été-automne 2016
  • Volume 11.1 – hiver-printemps 2016
  • Volume 10.2 – été-automne 2015
  • Volume 10.1 – hiver-printemps 2015
  • Volume 9.2 – été-automne 2014
  • Volume 9.1 – hiver-printemps 2014
  • Volume 8.2 – été-automne 2013
  • Volume 8.1 – hiver-printemps 2013
  • Volume 7.2 – été-automne 2012
  • Volume 7.1 – hiver-printemps 2012
  • Volume 6.2 – été-automne 2011
  • Volume 6.1 – hiver-printemps 2011
  • Volume 5.2 – été-automne 2010
  • Volume 5.1 – hiver-printemps 2010
  • Volume 4.2 – été-automne 2009
  • Volume 4.1 – hiver-printemps 2009
  • Volume 3.2 – été-automne 2008
  • Volume 3.1 – hiver-printemps 2008
  • Volume 2.2 – été-automne 2007
  • Volume 2.1 – hiver-printemps 2007
  • Volume 1 – été-automne 2006
  • Article vedette

    Auteurs

    • Michel Adès
    • Antoine Allard
    • Jean Aubin
    • Marie Beaulieu
    • Rosalie Bélanger-Rioux
    • Claude Bélisle
    • Léo Belzile
    • Marc Bergeron
    • Pierre Bernier
    • André Boileau
    • Véronique Boutet
    • Pietro-Luciano Buono
    • Jean-Philippe Burelle
    • Massimo Caccia
    • Jérôme Camiré-Bernier
    • France Caron
    • Philippe Carphin
    • Kévin Cazelles
    • Laurent Charlin
    • Pierre Chastenay
    • Noémie Chenail
    • Christian Côté
    • Jocelyn Dagenais
    • Marie-France Dallaire
    • Jean-Lou de Carufel
    • Jean-Marie De Koninck
    • Lambert De Monte
    • Jean-Paul Delahaye
    • Marc-André Desautels
    • Florin Diacu
    • Jimmy Dillies
    • Nicolas Doyon
    • Philippe Drobinski
    • Hugo Drouin-Vaillancourt
    • Louis J. Dubé
    • Thierry Duchesne
    • Matthieu Dufour
    • Stéphane Durand
    • Thomas Erneux
    • Philippe Etchécopar
    • Julien Fageot
    • Charles Fleurent
    • Serge Fontaine
    • Jérôme Fortier
    • Marlène Frigon
    • Jean-François Gagnon
    • André Garon
    • Christian Genest
    • Denis Gilbert
    • Jonathan Godin
    • Frédéric Gourdeau
    • Samuel Goyette
    • Andrew Granville
    • Jean Guérin
    • Hervé Guillard
    • Abba B. Gumel
    • James A. Hanley
    • Alain Hertz
    • Bernard R. Hodgson
    • Isabelle Jalliffier-Verne
    • Guillaume Jouvet
    • Tomasz Kaczynski
    • Patrick Labelle
    • Marc Laforest
    • Nadia Lafrenière
    • Josiane Lajoie
    • Alexis Langlois-Rémillard
    • Simon-Olivier Laperrière
    • René Laprise
    • Steffen Lauritzen
    • Denis Lavigne
    • Adrien Lessard
    • Steven Lu
    • Jean Meunier
    • Erica Moodie
    • Normand Mousseau
    • Johanna G. Nešlehová
    • Pierre-André Noël
    • Dmitry Novikov
    • Ostap Okhrin
    • Laurent Pelletier
    • Jean-François Plante
    • Serge B. Provost
    • Annie Claude Prud'Homme
    • Benoît Rittaud
    • Louis-Paul Rivest
    • Serge Robert
    • André Ross
    • Guillaume Roy-Fortin
    • Yvan Saint-Aubin
    • Maria Vittoria Salvetti
    • Charles Senécal
    • Vasilisa Shramchenko
    • Robert Smith?
    • Dylan Spicker
    • Anik Trahan
    • Shophika Vaithyanathasarma
    • William Verreault
    • Redouane Zazoun

Sujets

Accro-flashs (18) Algèbre (2) Applications (3) Applications des mathématiques (74) Changements climatiques (3) Climat (1) Construction des mathématiques (4) COVID-19 (10) Cristallographie (2) cryptographie (2) GPS (2) Gravité (2) Géométrie (12) Histoire des mathématiques (27) Imagerie (2) Infini (2) Informatique (2) Informatique théorique (3) Jeux mathématiques (2) Logique mathématique (18) Lumière (5) Mathématiques de la planète Terre (18) Mathématiques et architecture (1) Mathématiques et arts (8) Mathématiques et astronomie (6) Mathématiques et biologie (7) Mathématiques et développement durable (9) Mathématiques et littérature (9) Mathématiques et musique (1) Mathématiques et médecine (11) Mathématiques et physique (3) Mathématiques et transport (5) Modélisation (1) Nombres (4) Pavages (5) Portrait d'un mathématicien (20) Portrait d'un physicien (3) Probabilités (8) Probabilités et statistique (19) Racines (2) Rubrique des Paradoxes (71) Section problèmes (41) Théorie des groupes (1) Éditorial (38) Épidémiologie (2)
    • Instagram
    • Facebook

    © 2025 Accromath