• Accueil
  • À propos
  • Accrom\(\alpha\)th en PDF
  • Commanditaires
  • Contact
  • Contributions des lecteurs
  • Sites amis

Logo

Rubrique des paradoxes: Les deux paires de chaussettes

Par Jean-Paul Delahaye
Volume 16.1 - hiver-printemps 2021

Il fait froid, Lucien a décidé de mettre deux paires de chaussettes (l’une est rouge et l’autre est noire). Lucien sait qu’elles sont rangées dans son tiroir qui ne contient rien d’autre. Il fait nuit et, pour ne pas déranger, il n’allume pas la lumière. Il met ses chaussettes au hasard. Lucien n’aura pas à les enlever et à les remettre une seconde fois dans la cuisine si chaque pied porte deux chaussettes différentes dans le même ordre, par exemple une rouge en dessous et une noire au-dessus à chaque pied. Lucien se demande quelle est la probabilité pour qu’il réussisse du premier coup à mettre ses 4 chaussettes d’une façon convenable?

Raisonnement 1

Lucien prend une chaussette au hasard, il la met à son pied droit. Il en prend une seconde, il la met à son pied droit par- dessus la première. Tout sera correct à cet instant si la seconde chaussette – prise parmi trois – n’est pas la jumelle de celle mise en premier. Cela se produira deux fois sur trois (car la chaussette jumelle de celle déjà enfilée est l’une des trois qui restent). Ensuite, il met à son pied gauche une troisième chaussette (prise parmi deux différentes). Elle doit être la jumelle de celle mise en premier à droite, cela se produira une fois sur deux. La dernière sera alors nécessairement convenable.

En tout, la probabilité de réussir est donc
P = 2/3 × 1/2 = 1/3.

Raisonnement 2

Lucien prend deux chaussettes au hasard et les met à son pied droit. Il faut qu’elles soient différentes. Les choix possibles sont rouge-rouge, noire-noire, rouge-noire, noire-rouge. Lucien a donc une chance sur deux de mettre ses deux chaussettes sans s’engager vers une configuration insatisfaisante. Ensuite, il doit mettre les deux autres chaussettes (qui sont de couleurs différentes) dans le bon ordre, et cela donnera quelque chose de convenable une fois sur deux.

Lucien réussira donc une fois sur quatre :
P = 1/4.

Raisonnement 3

Lucien prend deux chaussettes au hasard et en met une à droite, l’autre à gauche. Pour que cela ne l’engage pas vers une mauvaise configuration, il faut que les deux chaussettes choisies soient de la même couleur. Les possibilités sont rouge-rouge, noire-noire, rouge-noire, noire-rouge. Donc une configuration convenable se produira une fois sur deux. Si c’est le cas, les deux autres chaussettes seront aussi convenablement placées.

La probabilité de réussir est donc 1/2 :
P = 1/2.

Voilà qui est étrange et paradoxal : la probabilité de réussir ne peut pas être à la fois 1/4, 1/3 et 1/2. Quel raisonnement est bon ? Expliquez alors pourquoi les deux autres sont faux. Autre possibilité : ils sont tous bons, car la probabilité de réussir dépend de la procédure qu’on utilise et la conclusion doit donc être qu’il faut utiliser la troisième méthode puisqu’elle me donne une chance sur deux de réussir ce qui est le mieux.

Pour en s\(\alpha\)voirplus !

PDF

  • ● Version PDF
Partagez
  • tweet

Tags: Rubrique des Paradoxes

Articles récents

  • Statistique et santé publique

    André Ross
  • Modéliser le réchauffement climatique

    France Caron
  • Partage équitable bis

    Christiane Rousseau

Sur le même sujet

  • Solution du paradoxe précédent: Le congrès des myopes

    Jean-Paul Delahaye
  • Rubrique des paradoxes: Le congrès des myopes

    Jean-Paul Delahaye
  • Solution du paradoxe précédent: Les chapeaux alignés

    Jean-Paul Delahaye

Volumes

  • Journée internationale des mathématiques: Accromath multilingue
  • Volume 16.1 – hiver-printemps 2021
  • Volume 15.2 – été-automne 2020
  • Thème spécial: Les mathématiques sont partout
  • Volume 15.1 – hiver-printemps 2020
  • Volume 14.2 – été-automne 2019
  • Volume 14.1 – hiver-printemps 2019
  • Volume 13.2 – été-automne 2018
  • Volume 13.1 – hiver-printemps 2018
  • Volume 12.2 – été-automne 2017
  • Volume 12.1 – hiver-printemps 2017
  • Volume 11.2 – été-automne 2016
  • Volume 11.1 – hiver-printemps 2016
  • Volume 10.2 – été-automne 2015
  • Volume 10.1 – hiver-printemps 2015
  • Volume 9.2 – été-automne 2014
  • Volume 9.1 – hiver-printemps 2014
  • Volume 8.2 – été-automne 2013
  • Volume 8.1 – hiver-printemps 2013
  • Volume 7.2 – été-automne 2012
  • Volume 7.1 – hiver-printemps 2012
  • Volume 6.2 – été-automne 2011
  • Volume 6.1 – hiver-printemps 2011
  • Volume 5.2 – été-automne 2010
  • Volume 5.1 – hiver-printemps 2010
  • Volume 4.2 – été-automne 2009
  • Volume 4.1 – hiver-printemps 2009
  • Volume 3.2 – été-automne 2008
  • Volume 3.1 – hiver-printemps 2008
  • Volume 2.2 – été-automne 2007
  • Volume 2.1 – hiver-printemps 2007
  • Volume 1 – été-automne 2006
  • Article vedette

    Auteurs

    • Michel Adès
    • Antoine Allard
    • Jean Aubin
    • Marie Beaulieu
    • Rosalie Bélanger-Rioux
    • Claude Bélisle
    • Marc Bergeron
    • Pierre Bernier
    • André Boileau
    • Véronique Boutet
    • Pietro-Luciano Buono
    • Massimo Caccia
    • Jérôme Camiré-Bernier
    • France Caron
    • Philippe Carphin
    • Kévin Cazelles
    • Laurent Charlin
    • Pierre Chastenay
    • Jocelyn Dagenais
    • Marie-France Dallaire
    • Jean-Lou de Carufel
    • Jean-Marie De Koninck
    • Lambert De Monte
    • Jean-Paul Delahaye
    • Marc-André Desautels
    • Florin Diacu
    • Jimmy Dillies
    • Nicolas Doyon
    • Philippe Drobinski
    • Hugo Drouin-Vaillancourt
    • Louis J. Dubé
    • Thierry Duchesne
    • Stéphane Durand
    • Thomas Erneux
    • Philippe Etchécopar
    • Charles Fleurent
    • Jérôme Fortier
    • Marlène Frigon
    • Jean-François Gagnon
    • André Garon
    • Christian Genest
    • Denis Gilbert
    • Jonathan Godin
    • Frédéric Gourdeau
    • Samuel Goyette
    • Jean Guérin
    • Hervé Guillard
    • Abba B. Gumel
    • James A. Hanley
    • Alain Hertz
    • Bernard R. Hodgson
    • Isabelle Jalliffier-Verne
    • Guillaume Jouvet
    • Tomasz Kaczynski
    • Patrick Labelle
    • Marc Laforest
    • Josiane Lajoie
    • Alexis Langlois-Rémillard
    • René Laprise
    • Steffen Lauritzen
    • Denis Lavigne
    • Adrien Lessard
    • Jean Meunier
    • Normand Mousseau
    • Johanna G. Nešlehová
    • Pierre-André Noël
    • Dmitry Novikov
    • Ostap Okhrin
    • Laurent Pelletier
    • Jean-François Plante
    • Annie Claude Prud'Homme
    • Benoît Rittaud
    • Louis-Paul Rivest
    • Serge Robert
    • André Ross
    • Christiane Rousseau
    • Guillaume Roy-Fortin
    • Yvan Saint-Aubin
    • Maria Vittoria Salvetti
    • Vasilisa Shramchenko
    • Robert Smith?
    • William Verreault
    • Redouane Zazoun

Sujets

Algèbre Applications Applications des mathématiques Changements climatiques Chaos Construction des mathématiques COVID-19 Cristallographie cryptographie Dimension 4 Fractales GPS Gravité Géométrie Histoire des mathématiques Imagerie Infini Informatique Informatique théorique Jeux mathématiques Logique mathématique Lumière Mathématiques de la planète Terre Mathématiques et architecture Mathématiques et arts Mathématiques et astronomie Mathématiques et biologie Mathématiques et développement durable Mathématiques et littérature Mathématiques et médecine Mathématiques et physique Mathématiques et transport Miroirs Nombres Pavages Portrait d'un mathématicien Portrait d'un physicien Probabilités Probabilités et statistique Racines Rubrique des Paradoxes Section problèmes Théorie des noeuds Éditorial Épidémiologie

© 2021 Accromath