• Accueil
  • À propos
  • Accrom\(\alpha\)th en PDF
  • Commanditaires
  • Contact
  • Contributions des lecteurs
  • Sites amis

Logo

Éditorial – vol. 14.2, été-automne 2019

Par André Ross
Volume 14.2 - été-automne 2019

Dans cet ouvrage

Les algorithmes sont des « recettes » pour résoudre des problèmes. La recette consiste à ramener le problème à une suite finie d’opérations clairement identifiées, exécutables par un être humain ou éventuellement par une machine. Les algorithmes sont omniprésents en mathématiques et contribuent à leur incroyable efficacité. C’est pourquoi nous avons choisi le thème des algorithmes pour ce numéro. Dès le développement des premiers systèmes de numération, des algorithmes ont été mis au point pour effectuer les opérations de base, calculer des puissances ou extraire des racines. Les exemples présentés dans Algorithmes au cours de l’histoire illustrent le fait que ceux-ci peuvent dépendre du système de numération et des procédés techniques utilisés pour effectuer les calculs.

Mais il ne suffit pas d’avoir un algorithme. Encore faut-il pouvoir l’exécuter en un temps raisonnable. Les algorithmes de factorisation des grands nombres fascinent les mathématiciens : il est très facile de multiplier deux grands nombres premiers, mais beaucoup plus difficile de retrouver les facteurs. Ce thème est abordé dans deux articles.

Dans son article L’héritage de Fermat pour la factorisation des grands nombres, Jean-Marie De Koninck nous fait part de progrès dans cette direction, lesquels nécessitent le recours à l’essai-erreur.

L’article Facile, difficile, … de Christiane Rousseau décrit comment la difficulté de factoriser de grands nombres a permis de construire un procédé de cryptographie, le code RSA, présentement inviolable sur nos ordinateurs, mais qui ne résistera pas à l’avènement de l’ordinateur quantique.

Le développement d’un algorithme est le fruit d’une réflexion théorique sur le type de problèmes ou d’opérations à effectuer. Dans Émergence logarithmique: la « mirifique » invention de Napier, Jérôme Camiré-Bernier et Bernard R. Hodgson décrivent la démarche qui a mené à l’invention des logarithmes par John Napier (1550-1617). Cette invention a permis le développement d’algorithmes très efficaces pour calculer un produit, une puissance ou la racine nième de très grands nombres.

Il n’existe pas toujours de méthode exacte pour résoudre un problème d’optimisation en un temps raisonnable. Inspiré par la théorie de l’évolution de Charles Darwin (1809-1882), John Henry Holland (1929-2015) a développé une approche appliquant la notion de sélection naturelle à une population de solutions potentielles au problème posé. Dans Algorithmes génétiques, Charles Fleurent donne un aperçu de cette nouvelle famille d’algorithmes.

Dans un second paradoxe intitulé L’information paradoxale, Jean-Paul Delahaye nous présente un problème qui est soluble même si on peut à prime abord penser manquer d’information pour y parvenir.

Bonne lecture !
André Ross

  • ● Version PDF
Partagez
  • tweet

Tags: Éditorial

Articles récents

  • Le mouvement brownien : Du pollen de Brown à l’origine de la finance moderne

    Michel Adès, Matthieu Dufour, Steven Lu et Serge Provost
  • Le problème des \(N\) corps

    Christiane Rousseau
  • Comprendre la structure des nombres premiers

    Andrew Granville

Sur le même sujet

  • Éditorial : vol. 18.1 – hiver-printemps 2023

    André Ross
  • Éditorial : vol. 17.2, été-automne 2022

    André Ross
  • Éditorial: vol 17.1, hiver-printemps 2022

    André Ross

Volumes

  • Volume 18.1 – hiver-printemps 2023
  • Volume 17.2 – été-automne 2022
  • Volume 17.1 – hiver-printemps 2022
  • Journée internationale des mathématiques: Accromath multilingue
  • Volume 16.2 – été-automne 2021
  • Volume 16.1 – hiver-printemps 2021
  • Volume 15.2 – été-automne 2020
  • Thème spécial: Les mathématiques sont partout
  • Volume 15.1 – hiver-printemps 2020
  • Volume 14.2 – été-automne 2019
  • Volume 14.1 – hiver-printemps 2019
  • Volume 13.2 – été-automne 2018
  • Volume 13.1 – hiver-printemps 2018
  • Volume 12.2 – été-automne 2017
  • Volume 12.1 – hiver-printemps 2017
  • Volume 11.2 – été-automne 2016
  • Volume 11.1 – hiver-printemps 2016
  • Volume 10.2 – été-automne 2015
  • Volume 10.1 – hiver-printemps 2015
  • Volume 9.2 – été-automne 2014
  • Volume 9.1 – hiver-printemps 2014
  • Volume 8.2 – été-automne 2013
  • Volume 8.1 – hiver-printemps 2013
  • Volume 7.2 – été-automne 2012
  • Volume 7.1 – hiver-printemps 2012
  • Volume 6.2 – été-automne 2011
  • Volume 6.1 – hiver-printemps 2011
  • Volume 5.2 – été-automne 2010
  • Volume 5.1 – hiver-printemps 2010
  • Volume 4.2 – été-automne 2009
  • Volume 4.1 – hiver-printemps 2009
  • Volume 3.2 – été-automne 2008
  • Volume 3.1 – hiver-printemps 2008
  • Volume 2.2 – été-automne 2007
  • Volume 2.1 – hiver-printemps 2007
  • Volume 1 – été-automne 2006
  • Article vedette

    Auteurs

    • Michel Adès
    • Antoine Allard
    • Jean Aubin
    • Marie Beaulieu
    • Rosalie Bélanger-Rioux
    • Claude Bélisle
    • Marc Bergeron
    • Pierre Bernier
    • André Boileau
    • Véronique Boutet
    • Pietro-Luciano Buono
    • Massimo Caccia
    • Jérôme Camiré-Bernier
    • France Caron
    • Philippe Carphin
    • Kévin Cazelles
    • Laurent Charlin
    • Pierre Chastenay
    • Noémie Chenail
    • Jocelyn Dagenais
    • Marie-France Dallaire
    • Jean-Lou de Carufel
    • Jean-Marie De Koninck
    • Lambert De Monte
    • Jean-Paul Delahaye
    • Marc-André Desautels
    • Florin Diacu
    • Jimmy Dillies
    • Nicolas Doyon
    • Philippe Drobinski
    • Hugo Drouin-Vaillancourt
    • Louis J. Dubé
    • Thierry Duchesne
    • Matthieu Dufour
    • Stéphane Durand
    • Thomas Erneux
    • Philippe Etchécopar
    • Julien Fageot
    • Charles Fleurent
    • Jérôme Fortier
    • Marlène Frigon
    • Jean-François Gagnon
    • André Garon
    • Christian Genest
    • Denis Gilbert
    • Jonathan Godin
    • Frédéric Gourdeau
    • Samuel Goyette
    • Andrew Granville
    • Jean Guérin
    • Hervé Guillard
    • Abba B. Gumel
    • James A. Hanley
    • Alain Hertz
    • Bernard R. Hodgson
    • Isabelle Jalliffier-Verne
    • Guillaume Jouvet
    • Tomasz Kaczynski
    • Patrick Labelle
    • Marc Laforest
    • Nadia Lafrenière
    • Josiane Lajoie
    • Alexis Langlois-Rémillard
    • Simon-Olivier Laperrière
    • René Laprise
    • Steffen Lauritzen
    • Denis Lavigne
    • Adrien Lessard
    • Steven Lu
    • Jean Meunier
    • Erica Moodie
    • Normand Mousseau
    • Johanna G. Nešlehová
    • Pierre-André Noël
    • Dmitry Novikov
    • Ostap Okhrin
    • Laurent Pelletier
    • Jean-François Plante
    • Serge B. Provost
    • Annie Claude Prud'Homme
    • Benoît Rittaud
    • Louis-Paul Rivest
    • Serge Robert
    • André Ross
    • Christiane Rousseau
    • Guillaume Roy-Fortin
    • Yvan Saint-Aubin
    • Maria Vittoria Salvetti
    • Charles Senécal
    • Vasilisa Shramchenko
    • Robert Smith?
    • Anik Trahan
    • Shophika Vaithyanathasarma
    • William Verreault
    • Redouane Zazoun

Sujets

Algèbre Applications Applications des mathématiques Changements climatiques Climat Construction des mathématiques COVID-19 Cristallographie cryptographie GPS Gravité Géométrie Histoire des mathématiques Imagerie Infini Informatique Informatique théorique intelligence artificielle Jeux mathématiques Logique mathématique Lumière Mathématiques de la planète Terre Mathématiques et architecture mathématiques et art Mathématiques et arts Mathématiques et astronomie Mathématiques et biologie Mathématiques et développement durable Mathématiques et littérature Mathématiques et musique Mathématiques et médecine Mathématiques et physique Mathématiques et transport Modélisation Nombres Portrait d'un mathématicien Portrait d'un physicien Probabilités Probabilités et statistique Racines Rubrique des Paradoxes Section problèmes Théorie des groupes Éditorial Épidémiologie

© 2023 Accromath