Rappel de l’énoncé
Vous devez acheter une voiture dans la matinée et vous allez rencontrer successivement deux vendeurs qui vont chacun vous offrir le même modèle de voiture et vous proposer un prix « à prendre ou à laisser ». Vous avez rendez-vous avec le premier vendeur à 10h et, à 10h30, vous devrez soit avoir renoncé à acheter sa voiture, soit avoir fait le chèque pour la somme qu’il vous demande. À 11h, vous rencontrerez le second vendeur. Si vous avez refusé la première voiture, vous achèterez au second vendeur, qui sera peut-être plus cher. Il vous est impossible de connaître à l’avance les offres de prix P1 du premier vendeur et P2 du second vendeur. Vous vous dites :
J’ai une chance sur deux de faire le bon choix. En effet, si (a) j’achète au premier vendeur, il se peut que le second soit moins cher mais je ne pourrais pas revenir sur ma décision car mon chèque sera fait, et (b), si je refuse d’acheter au premier, il se peut qu’il soit moins cher, ce que je ne saurai que lorsqu’il sera trop tard et que je serai contraint d’acheter au second vendeur. Il y a une chance sur deux pour que le moins cher soit le premier vendeur et une chance sur deux pour que ce soit le second; j’ai donc une chance sur deux d’acheter la voiture la moins chère, quoi que je fasse.
En réalité, il existe une façon de s’y prendre qui garantit de réussir à acheter au meilleur prix avec une probabilité strictement supérieure à 50 %. Cette méthode ne vous assure pas d’acheter toujours au meilleur prix, mais vous permet de le faire plus d’une fois sur deux. Quelle est cette méthode?
Solution
– Faites l’estimation E de la voiture en cherchant à être le plus raisonnable possible, puis adoptez la stratégie suivante : si le premier vendeur propose un prix inférieur ou égal à E, achetez, sinon achetez au second vendeur.
En adoptant cette méthode, vous achèterez au moins cher des deux vendeurs plus d’une fois sur deux. En effet :
a) Si les deux vendeurs proposent un prix supérieur à E, vous refuserez au premier et vous achèterez au second, qui, dans ce cas, sera une fois sur deux le plus bas.
b) Si les deux vendeurs proposent un prix inférieur à E, vous achèterez au premier, qui à nouveau sera, une fois sur deux exactement, le moins cher.
c) Si l’un des deux vendeurs propose moins que E et l’autre plus, la stratégie assure d’acheter au meilleur prix.
Les deux cas a et b donnent autant de chances de faire le bon choix que le mauvais; le cas c conduit lui toujours à un bon achat. Comme bien sûr la probabilité du cas c n’est pas nulle, vous avez plus d’une chance sur deux de faire le bon choix.
À vrai dire, ce raisonnement est valable quelle que soit la valeur E fixée à l’avance. Cependant, il est bien clair que, pour rendre plus probable le cas c (qui est celui qui rend favorable la méthode), il vaut mieux choisir E le plus proche possible des valeurs que sont susceptibles de proposer les vendeurs de la voiture convoitée.
Ce raisonnement étonnant conduit bien à faire le bon choix plus d’une fois sur deux, mais, comme vous l’avez noté, il ne dit pas quelle est la valeur précise p de la probabilité de faire le bon choix : il indique seulement que \(p > 1/2.\)
Cette stratégie paradoxale a été proposée pour la première fois par Thomas Cover dans l’article « Pick the largest number » publié dans le livre « Open Problems in Communication and Computation », Springer-Verlag, New-York, 1987.