
Les paradoxes du dernier numéro étaient de simples découpages comme celui-ci.
En apparence le même triangle est rempli deux fois par les mêmes pièces, bien que la seconde fois un carré blanc supplémentaire soit présent. Cela semble impossible puisque déplacer des pièces ne peut pas diminuer ou augmenter la surface qu’elles occupent !
Il s’agit d’une arnaque assez élémentaire qu’un regard attentif permet de dénoncer facilement. En réalité, aucune des deux figures n’est un vrai triangle. En effet, la pente de l’hypoténuse du petit triangle rectangle rouge est 2/5 = 0,4 (il y a 2 cases de hauteur et 5 de largeur) alors que celle du petit triangle orangé est de 3/8 = 0,375 : les deux hypoténuses ne s’alignent pas l’une avec l’autre. Dans le premier dessin, le « pseudo-triangle » est légèrement creusé, alors que le second « pseudo-triangle » est légèrement gonflé (ce qui explique qu’on puisse y loger un carré blanc de plus).
Le même genre d’explications s’applique aux autres figures.