• Accueil
  • À propos
  • Accrom\(\alpha\)th en PDF
  • Commanditaires
  • Contact et Abonnements
  • Sites amis

Logo

Section problèmes : Vol. 7, été-automne 2012

Par France Caron
Volume 7.2 - été-automne 2012

Mathématiques au théâtre

À la question du professeur de La leçon « combien font, par exemple, trois milliards sept cent cinquante-cinq millions neuf cent quatre-vingt-dix-huit mille deux cent cinquante et un, multiplié par cinq milliards cent soixante-deux millions trois cent trois mille cinq cent huit? », Ionesco fait répondre par l’élève (très vite!) : « Ça fait dix-neuf quintillions trois cent quatre-vingt-dix quadrillions deux trillions huit cent quarante-quatre milliards deux cent dix-neuf millions cent soixante-quatre mille cinq cent huit … » Le professeur étonné réplique alors : « Non. Je ne pense pas. Ça doit faire dix-neuf quintillions trois cent quatre-vingt-dix quadrillions deux trillions huit cent quarante-quatre milliards deux cent dix-neuf millions cent soixante-quatre mille cinq cent neuf… »

Qui a sûrement tort? Se pourrait-il que les deux se trompent?

(Conseil : Comme la valeur exacte du résultat dépasse les possibilités de représentation des nombres dans votre calculatrice, cherchez une façon créative d’utiliser cet outil pour arriver à la bonne réponse sans faire tous les calculs à la main.)

La quête du fameux 22/7

    1. Étant donné un triangle équilatéral DEF, abaissons la hauteur EG (avec G sur DF), formant ainsi un triangle rectangle DEG d’hypoténuse DE. Déterminer les rapports des longueurs des côtés du triangle DEG.Problemes_7_2-figure1
    2. Soit un triangle ABC et soit AD, la bissectrice de l’angle A (avec D sur BC). Montrer que les segments BD et DC sont dans le même rapport que les deux côtés AB et AC du triangle. (Euclide, Éléments, VI.3)
      (Tuyau : Menez une parallèle à la bissectrice par un point astucieusement choisi et faites intervenir Thalès.)
  1. Cet exercice vise à expliciter deux étapes du raisonnement dans l’encadré Le coeur de l’argument d’Archimède. Soit donc le triangle \(BOA\) rectangle en \(A\) et tel que l’angle \(BOA\) vaut 30°. Soit de plus \(OC,\) bissectrice de cet angle.Problemes_7_2-figure2
    1. Montrer que
      \[ \frac {m(\overline{AO}) + m(\overline{BO})}{m(\overline{AO})} = \frac {m(\overline{AB})}{m(\overline{AC})}.\]
      En déduire une borne inférieure pour le rapport
      \[ \frac {m(\overline{AO})}{m(\overline{AC})}.\]
    2. Se concentrant maintenant sur le triangle rectangle \(COA,\) donner une borne inférieure pour le rapport1.
      \[ \frac {m(\overline{AO})^2 +m(\overline{AC})^2}{m(\overline{AC})^2}.\]
  2. Dans le cinquième livre de La Collection mathématique, le mathématicien grec Pappus d’Alexandrie (4e siècle) se penche sur le lien entre la circonférence d’un cercle et son diamètre et démontre, à la proposition 11, le résultat suivant :

    Les circonférences de cercles sont entre elles comme les diamètres.

    La démonstration proposée par Pappus repose sur deux résultats préliminaires : le fait que les aires de cercles sont entre elles comme les carrés des diamètres (Euclide, Éléments, XII.2) et la proposition 1 du traité De la mesure du cercle, où Archimède établit que l’aire d’un cercle est celle d’un triangle rectangle ayant pour cathètes le rayon et la circonférence du cercle.

    Montrer comment obtenir la proposition V.11 de Pappus à partir de ces deux résultats d’Euclide et d’Archimède.

Solutions

PDF

  1. Archimède s’appuie sur ce rapport pour borner inférieurement le rapport
    \( \frac {m(\overline{CO})}{m(\overline{AC})}.\) ↩
  • ● Version PDF
Partagez
  • tweet

Etiquettes : Section problèmes

Articles récents

  • Se rendre invisible, est-ce possible ?

    Christiane Rousseau
  • Points, droites et plans

    André Ross
  • Le jeu de Nim

    Christiane Rousseau

Sur le même sujet

  • Section problèmes : vol. 20.1

    André Ross et Bernard R. Hodgson
  • Section problèmes : vol. 19.2

    André Ross
  • Section problèmes : vol. 19.1

    André Ross et Bernard R. Hodgson

Volumes

  • Volume 19.1 – hiver-printemps 2024
  • Volume 19.2 – été-automne 2024
  • Volume 20.1 – hiver-printemps 2025
  • Volume 18.2 – été-automne 2023
  • Volume 18.1 – hiver-printemps 2023
  • Volume 17.2 – été-automne 2022
  • Volume 17.1 – hiver-printemps 2022
  • Journée internationale des mathématiques: Accromath multilingue
  • Volume 16.2 – été-automne 2021
  • Volume 16.1 – hiver-printemps 2021
  • Volume 15.2 – été-automne 2020
  • Thème spécial: Les mathématiques sont partout
  • Volume 15.1 – hiver-printemps 2020
  • Volume 14.2 – été-automne 2019
  • Volume 14.1 – hiver-printemps 2019
  • Volume 13.2 – été-automne 2018
  • Volume 13.1 – hiver-printemps 2018
  • Volume 12.2 – été-automne 2017
  • Volume 12.1 – hiver-printemps 2017
  • Volume 11.2 – été-automne 2016
  • Volume 11.1 – hiver-printemps 2016
  • Volume 10.2 – été-automne 2015
  • Volume 10.1 – hiver-printemps 2015
  • Volume 9.2 – été-automne 2014
  • Volume 9.1 – hiver-printemps 2014
  • Volume 8.2 – été-automne 2013
  • Volume 8.1 – hiver-printemps 2013
  • Volume 7.2 – été-automne 2012
  • Volume 7.1 – hiver-printemps 2012
  • Volume 6.2 – été-automne 2011
  • Volume 6.1 – hiver-printemps 2011
  • Volume 5.2 – été-automne 2010
  • Volume 5.1 – hiver-printemps 2010
  • Volume 4.2 – été-automne 2009
  • Volume 4.1 – hiver-printemps 2009
  • Volume 3.2 – été-automne 2008
  • Volume 3.1 – hiver-printemps 2008
  • Volume 2.2 – été-automne 2007
  • Volume 2.1 – hiver-printemps 2007
  • Volume 1 – été-automne 2006
  • Article vedette

    Auteurs

    • Michel Adès
    • Antoine Allard
    • Jean Aubin
    • Marie Beaulieu
    • Rosalie Bélanger-Rioux
    • Claude Bélisle
    • Léo Belzile
    • Marc Bergeron
    • Pierre Bernier
    • André Boileau
    • Véronique Boutet
    • Pietro-Luciano Buono
    • Jean-Philippe Burelle
    • Massimo Caccia
    • Jérôme Camiré-Bernier
    • France Caron
    • Philippe Carphin
    • Kévin Cazelles
    • Laurent Charlin
    • Pierre Chastenay
    • Noémie Chenail
    • Christian Côté
    • Jocelyn Dagenais
    • Marie-France Dallaire
    • Jean-Lou de Carufel
    • Jean-Marie De Koninck
    • Lambert De Monte
    • Jean-Paul Delahaye
    • Marc-André Desautels
    • Florin Diacu
    • Jimmy Dillies
    • Nicolas Doyon
    • Philippe Drobinski
    • Hugo Drouin-Vaillancourt
    • Louis J. Dubé
    • Thierry Duchesne
    • Matthieu Dufour
    • Stéphane Durand
    • Thomas Erneux
    • Philippe Etchécopar
    • Julien Fageot
    • Charles Fleurent
    • Serge Fontaine
    • Jérôme Fortier
    • Marlène Frigon
    • Jean-François Gagnon
    • André Garon
    • Christian Genest
    • Denis Gilbert
    • Jonathan Godin
    • Frédéric Gourdeau
    • Samuel Goyette
    • Andrew Granville
    • Jean Guérin
    • Hervé Guillard
    • Abba B. Gumel
    • James A. Hanley
    • Alain Hertz
    • Bernard R. Hodgson
    • Isabelle Jalliffier-Verne
    • Guillaume Jouvet
    • Tomasz Kaczynski
    • Patrick Labelle
    • Marc Laforest
    • Nadia Lafrenière
    • Josiane Lajoie
    • Alexis Langlois-Rémillard
    • Simon-Olivier Laperrière
    • René Laprise
    • Steffen Lauritzen
    • Denis Lavigne
    • Adrien Lessard
    • Steven Lu
    • Jean Meunier
    • Erica Moodie
    • Normand Mousseau
    • Johanna G. Nešlehová
    • Pierre-André Noël
    • Dmitry Novikov
    • Ostap Okhrin
    • Laurent Pelletier
    • Jean-François Plante
    • Serge B. Provost
    • Annie Claude Prud'Homme
    • Benoît Rittaud
    • Louis-Paul Rivest
    • Serge Robert
    • André Ross
    • Guillaume Roy-Fortin
    • Yvan Saint-Aubin
    • Maria Vittoria Salvetti
    • Charles Senécal
    • Vasilisa Shramchenko
    • Robert Smith?
    • Dylan Spicker
    • Anik Trahan
    • Shophika Vaithyanathasarma
    • William Verreault
    • Redouane Zazoun

Sujets

Accro-flashs (18) Algèbre (2) Applications (3) Applications des mathématiques (74) Changements climatiques (3) Climat (1) Construction des mathématiques (4) COVID-19 (10) Cristallographie (2) cryptographie (2) GPS (2) Gravité (2) Géométrie (12) Histoire des mathématiques (27) Imagerie (2) Infini (2) Informatique (2) Informatique théorique (3) Jeux mathématiques (2) Logique mathématique (18) Lumière (5) Mathématiques de la planète Terre (18) Mathématiques et architecture (1) Mathématiques et arts (8) Mathématiques et astronomie (6) Mathématiques et biologie (7) Mathématiques et développement durable (9) Mathématiques et littérature (9) Mathématiques et musique (1) Mathématiques et médecine (11) Mathématiques et physique (3) Mathématiques et transport (5) Modélisation (1) Nombres (4) Pavages (5) Portrait d'un mathématicien (20) Portrait d'un physicien (3) Probabilités (8) Probabilités et statistique (19) Racines (2) Rubrique des Paradoxes (71) Section problèmes (41) Théorie des groupes (1) Éditorial (38) Épidémiologie (2)
    • Instagram
    • Facebook

    © 2025 Accromath